Investigation of Innovative Trailing Edge Cooling Configurations With Enlarged Pedestals and Square or Semicircular Ribs: Part II—Numerical Results

Author:

Di Carmine Emiliano1,Facchini Bruno1,Mangani Luca1

Affiliation:

1. University of Florence, Firenze, Italy

Abstract

Trailing edge is a critical region for turbine airfoils since this part of the blade has to match aerodynamic, cooling and structural requirements at the same time. In fact aerodynamic losses are strictly related to trailing edge thickness which, on the contrary, tends to be increased to implement an internal cooling system, in order to face high thermal loads. At the moment the most employed devices consist of pin fins of various shapes, which contribute to both heat transfer enhancement and structural resistance improvement. Enlarged pedestals decrease pressure losses in comparison with multirow pin fins, even if the heat transfer increase is limited. This work deals with the investigation of the usage of enlarged pedestals, inserted in a wedge shaped duct, in conjunction with square or semicircular rib turbulators. The aim of the analysis is the evaluation of the convective Heat Transfer Coefficient (HTC) distribution over the endwall surface and the pressure drop of the converging duct. Numerical analysis used 3D RANS calculations. An in-house modified object-oriented CFD code and a commercial one were used. Several turbulence models and mesh types were tested. Numerical calculations were compared with experimental results obtained on the same geometries using a transient Thermochromic Liquid Crystals (TLC) based technique. Goals of this comparison are both the evaluation of the accuracy of CFD packages with standard two equation turbulence models in heat transfer problems with complex geometries and the analysis of flow details to complete and support experimental activity.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3