Unsteady Pressure Measurement in a Single Stage Axial Transonic Compressor Near the Stability Limit

Author:

Biela Christoph1,Mu¨ller Martin W.1,Schiffer Heinz-Peter1,Zscherp Carsten2

Affiliation:

1. Technische Universita¨t Darmstadt, Darmstadt, Germany

2. MTU Aero Engines GmbH, Munich, Germany

Abstract

With the help of piezoelectric high frequency pressure probes measurements are undertaken to investigate the flow during stable compressor operation close to the stability limit. Fourteen static pressure probes record the static wall pressure and ten total pressure probes record the total pressure at the rotor exit, both in the absolute frame of reference. The data is then visualised as ensemble averaged contour and spectrum plots. With the help of wall and exit pressure, the tip leakage vortex is localised. Oscillations of the tip leakage vortex are seen as well in terms of high relative standard deviation as well as in an excitation of a frequency band around 1/2 BPF. Further investigation of the frequency spectrum with the help of the pseudo-unsteady wall pressure reveal the occurrence of rotating tip leakage vortex disturbances forming a two-passage periodic vortex pattern. The presented measurements were obtained using Rotor-1 from the TU Darmstadt rotor family. With a sampling rate of 125kHz the pressure field is resolved with 23 measurements per passage (at 20.000 rpm, design speed).

Publisher

ASMEDC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3