Numerical Simulation of Transonic Fan Flutter With 3D N-S CFD Code

Author:

Aotsuka Mizuho1,Tsuchiya Naoki1,Horiguchi Yasuo2,Nozaki Osamu3,Yamamoto Kazuomi3

Affiliation:

1. IHI Corporation, Tokyo, Japan

2. Foundation for Promotion of Japanese Aerospace Technology, Tokyo, Japan

3. JAXA, Tokyo, Japan

Abstract

This paper describes the calculation of transonic stall flutter of a fan. A new CFD code has been developed and validated. The code is an unsteady 3D multi-block flow solver. The Reynolds-Averaged Navier-Stokes equations are solved using a finite volume method with Spallart-Allmaras 1 equation turbulence model. A grid deforming system is applied, so the new code is capable of simulating an oscillating blade row. This grid deforming system produces less grid distortion and the code has robustness for a blade oscillating calculation. The code has validated on an IHI’s research transonic fan rig test, and the result was in good agreement with the test data in the prediction of the flutter boundary. In the rig test at part-speed condition, stall-side flutter was experienced. In that condition, the inlet relative Mach number in the tip region is about unity. The aerodynamic work by the CFD at the near flutter condition is positive, which means that the flutter characteristic is unstable, while at other conditions the aerodynamic work is negative. The aerodynamic work increases rapidly just before the zero damping point with the increase of the blade loading. From the detailed CFD result, the shock wave on the suction surface contributes to the excitement of the blade oscillation, and the aerodynamic work of the shock wave has large value at the flutter condition.

Publisher

ASMEDC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3