Radiation Bench-Marking in a Model Combustor

Author:

Jiang Lei-Yong1,Campbell Ian1

Affiliation:

1. National Research Council of Canada, Ottawa, ON, Canada

Abstract

Radiation heat transfer in a model combustor with interior and exterior conjugate heat transfers has been numerically studied. The previous investigations on turbulence, combustion and scalar transfer modeling (Reynolds analogy), and comparisons with a comprehensive experimental database provide a reliable base to evaluate the effect of radiation heat transfer on the flow field and NO emission in the combustor. Some of the numerical results with and without radiation are presented and compared with the experimental measurements. It is found that the total radiation heat flux through the combustor wall is about 4.2% of the total energy released from the input fuel. The effect of radiation on the flow field is minor, particularly to the velocity field. In contrast, it has significant effects on the NO field, where the predicted values without radiation are two times higher than those with radiation or the experimental data. A considerable effect of radiation on the combustor wall temperature is also observed. In summary, to provide valuable predictions of NO emission and combustor liner temperature, the radiation heat transfer should be properly taken into account in numerical simulations.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3