Heat Transfer and Pressure Measurements in a Lattice-Cooled Trailing Edge of a Turbine Airfoil

Author:

Saha Krishnendu1,Guo Shengmin1,Acharya Sumanta1,Nakamata Chiyuki2

Affiliation:

1. Louisiana State University, Baton Rouge, LA

2. IHI Corporation, Tokyo, Japan

Abstract

An experimental study of the heat transfer distribution and pressure drop through a converging lattice-matrix structure has been performed. This structure represents a gas turbine blade trailing-edge cooling passage. Stationary tests were performed on a scaled up model under three Reynolds numbers (24000<Re<60000). To obtain the wall temperature, the narrow band liquid crystal technique was used, and the heat transfer coefficient value was obtained using the transient method. It’s found that the Nusselt number ratio (Nu/Nu0) is around 4–5, comparing to the channel flow of similar hydraulic diameter and Re, for the whole lattice-matrix structure. Under the impingement and turning areas, the ratio can be as high as 7–8. Pressure data are taken throughout the lattice structure following the flow direction. The pressure drop increases with Reynolds number and as a result there is a decrease in the thermal performance factor at higher Reynolds number. In the present study thermal performance factor is found to be around 1–1.2. For comparison, pin fin based trailing edge configuration has a typical thermal performance factor of 0.7 to 0.85 under the same Reynolds numbers.

Publisher

ASMEDC

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3