Novel Concepts for the Compression of Large Volumes of Carbon Dioxide

Author:

Moore J. Jeffrey1,Nored Marybeth G.1

Affiliation:

1. Southwest Research Institute®, San Antonio, TX

Abstract

In order to reduce the amount of carbon dioxide (CO2) greenhouse gases released into the atmosphere, significant consideration has been given to the sequestration of CO2 from power plants and other major producers of greenhouse gas emissions. Integrated Gasification Combined Cycle (IGCC) power plants offer an alternative to pulverized coal plants because the carbon dioxide may be separated from the process gas stream prior to combustion. The compression of the captured carbon dioxide stream requires a sizeable amount of power, which impacts plant availability, capital expenditures and operational cost. Preliminary analysis has estimated that the CO2 compression process reduces the plant efficiency by 8% to 12% for a typical IGCC plant. The detailed thermodynamic analysis presented here examines methods to minimize the power penalty to the producer through integrated, low-power compression concepts. The goal of the present research is to reduce this penalty through novel compression concepts and integration with existing IGCC processes. The research supports the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) objectives of reducing the energy requirements for carbon capture and sequestration in electrical power production. The primary objective of this study is to boost the pressure of CO2 to pipeline pressures with the minimal amount of energy required. Fundamental thermodynamic analysis methods related to the compression of CO2 are used in the following paper to explore pressure and enthalpy rise in both liquid and gaseous states.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3