Gas-Side Heat Transfer in Syngas, Hydrogen-Fired and Oxy-Fuel Turbines

Author:

Mazzotta Danny W.1,Karaivanov Ventzislav G.1,Chyu Minking K.1,Slaughter William S.1,Alvin Mary Anne2

Affiliation:

1. University of Pittsburgh, Pittsburgh, PA

2. U.S. Department of Energy, Pittsburgh, PA

Abstract

To meet the performance goals of advanced fossil power generation systems; e.g. FutureGen, future coal-gas fired turbines will need to be operated at temperatures higher than those in the current commercial natural gas-fired systems. The working fluid in these future turbines could contain substantial moisture (steam) mixed with carbon dioxide, instead of air or nitrogen in conventional gas turbines. As a result, the aero-thermal characteristics among these new turbines are expected to be significantly different not only from the natural gas turbines but also dependent strongly on the compositions of turbine working fluids. Described in this paper is a quantitative comparison of thermal load on the external surface of turbine airfoil present in different power cycles the US Department of Energy plans for the next decade. The study is pursued with a computational simulation based on three-dimensional computational fluid dynamics (CFD) analysis. While the heat transfer coefficient has shown to vary strongly along the surface of the airfoil, the projected trends were relatively comparable for airfoils in syngas and hydrogen-fired cycles. However, the heat transfer coefficient for the oxy-fuel cycle is found to be substantially higher, by about 50–60%, than its counterparts in syngas and hydrogen turbines. This is largely attributable to the high steam concentration in the turbine flow. This overall suggests that advances in cooling technology and thermal barrier coatings are critical for the developments of future coal-based turbine technologies with nearly zero emission.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of an Unsteady Multi-Species Numerical Method for Internal Compressible Flows in the Turbine;International Journal of Gas Turbine, Propulsion and Power Systems;2013

2. Compressive Creep Testing of Thermal Barrier Coated Nickel-Based Superalloys;Journal of Engineering for Gas Turbines and Power;2011-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3