The Use of Eddy Current Sensor Based Blade Tip Timing for FOD Detection

Author:

Chana K. S.1,Cardwell D. N.1

Affiliation:

1. QinetiQ Ltd., Farnborough, Hampshire, UK

Abstract

Deterioration of rotor blades due to foreign object damage (FOD), erosion by sand/water, low cycle fatigue (LCF) and high cycle fatigue (HCF) all limit blade life, but cannot always be detected before a failure. The advent of tip-timing systems makes it possible to assess turbomachinery blade vibration using non-contact systems. However, these systems are still largely optical based and therefore suffer from contamination problems, further development of these systems is difficult due to problems associated with keeping the sensors clean. Experimental measurements have been carried out using an alternative eddy current sensor that has been validated in a series of laboratory and engine tests to measure rotor blade arrival times. A series of engine trials have been conducted to assess their capability for detection of pre-existing damage and the capture of dynamic foreign object damage (FOD) events. The results show that it is possible to acquire high quality blade timing data for use in engine condition monitoring. In addition for the detection of FOD created damage and FOD damage as it occurs.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on non-contact dynamic stress calibration method of fan blade on simulation;Journal of Physics: Conference Series;2024-05-01

2. Sensing Using Magnetoinductive Waves;Lecture Notes in Electrical Engineering;2024

3. Design of a Remote, Multi-Range Conductivity Sensor;Sensors;2023-12-08

4. Noise Reduction in the Capacitive Sensor-Based Tip Clearance Signal from Gas Turbine Engine;2023 Second International Conference on Advances in Computational Intelligence and Communication (ICACIC);2023-12-07

5. Error revising of blade tip-timing parameter identification caused by frequency sweep rate;Measurement;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3