Computational Modelling of Tip Heat Transfer to a Super-Scale Model of an Unshrouded Gas Turbine Blade

Author:

Tang Brian M. T.1,Palafox Pepe1,Gillespie David R. H.1,Oldfield Martin L. G.1,Cheong Brian C. Y.2

Affiliation:

1. University of Oxford, Oxford, UK

2. Rolls Royce plc, Bristol, UK

Abstract

Control of over-tip leakage flow between turbine blade tips and the stationary shroud is one of the major challenges facing gas turbine designers today. The flow imposes large thermal loads on unshrouded high pressure turbine blades and is significantly detrimental to turbine blade life. This paper presents results from a computational study performed to investigate the detailed blade tip heat transfer on a sharp-edged, flat tip HP turbine blade. The tip gap is engine representative at 1.5% of the blade chord. Nusselt number distributions on the blade tip surface have been obtained from steady flow simulations and are compared to experimental data carried out in a super-scale cascade, which allows detailed flow and heat transfer measurements in stationary and engine representative conditions. Fully structured, multiblock hexahedral meshes were used in the simulations, performed in the commercial solver Fluent. Seven industry-standard turbulence models, and a number of different tip gridding strategies are compared, varying in complexity from the one-equation Spalart-Allmaras model to a seven-equation Reynolds Stress model. Of the turbulence models examined, the standard k-ω model gave the closest agreement to the experimental data. The discrepancy in Nusselt number observed was just 5%. However, the size of the separation on the pressure side rim was underpredicted, causing the position of reattachment to occur too close to the edge. Other turbulence models tested typically underpredicted Nusselt numbers by around 35%, although locating the position of peak heat flux correctly. The effect of the blade to casing motion was also simulated successfully, qualitatively producing the same changes in secondary flow features as were previously observed experimentally, with associated changes in heat transfer to the blade tip.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3