Affiliation:
1. Inha University, Incheon, South Korea
2. Seoul National University, Seoul, South Korea
Abstract
This study aims to simulate performance deterioration of a microturbine and apply artificial neural network to its performance diagnosis. As it is hard to obtain test data with degraded component performance, the degraded engine data have been acquired through simulation. Artificial neural network is adopted as the diagnosis tool. First, the microturbine has been tested to get reference operation data, assumed to be degradation free. Then, a simulation program was set up to regenerate the performance test data. Deterioration of each component (compressor, turbine and recuperator) was modeled by changes in the component characteristic parameters such as compressor and turbine efficiency, their flow capacities and recuperator effectiveness and pressure drop. Single and double faults (deterioration of single and two components) were simulated to generate fault data. The neural network was trained with majority of the data sets. Then, the remaining data sets were used to check the predictability of the neural network. Given measurable performance parameters (power, temperatures, pressures) as inputs to the neural network, characteristic parameters of each component were predicted as outputs and compared with original data. The neural network produced sufficiently accurate prediction. Reducing the number of input data decreased prediction accuracy. However, excluding up to a couple of input data still produced acceptable accuracy.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献