Simulation of Performance Deterioration of a Microturbine and Application of Neural Network to Its Performance Diagnosis

Author:

Yoon Jae Eun1,Lee Jong Joon1,Kim Tong Seop1,Sohn Jeong Lak2

Affiliation:

1. Inha University, Incheon, South Korea

2. Seoul National University, Seoul, South Korea

Abstract

This study aims to simulate performance deterioration of a microturbine and apply artificial neural network to its performance diagnosis. As it is hard to obtain test data with degraded component performance, the degraded engine data have been acquired through simulation. Artificial neural network is adopted as the diagnosis tool. First, the microturbine has been tested to get reference operation data, assumed to be degradation free. Then, a simulation program was set up to regenerate the performance test data. Deterioration of each component (compressor, turbine and recuperator) was modeled by changes in the component characteristic parameters such as compressor and turbine efficiency, their flow capacities and recuperator effectiveness and pressure drop. Single and double faults (deterioration of single and two components) were simulated to generate fault data. The neural network was trained with majority of the data sets. Then, the remaining data sets were used to check the predictability of the neural network. Given measurable performance parameters (power, temperatures, pressures) as inputs to the neural network, characteristic parameters of each component were predicted as outputs and compared with original data. The neural network produced sufficiently accurate prediction. Reducing the number of input data decreased prediction accuracy. However, excluding up to a couple of input data still produced acceptable accuracy.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Approach for Model Developing to Estimate Unmeasured Parameters in an Engine Lifetime Monitoring System;Gas Turbines - Control, Diagnostics, Simulation, and Measurements [Working Title];2019-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3