Mechanisms of Residual Stress in Soft Tissues

Author:

Lanir Yoram1

Affiliation:

1. Faculty of Biomedical Engineering, Technion, IIT, Haifa 32000, Israel

Abstract

Although the importance of knowing the magnitude of residual stress (RS) and its functional significance are widely recognized, there is still disagreement and confusion regarding the nature of physical mechanisms giving rise to RS in tissues and organs. Here an attempt is made to examine the various mechanisms which may be involved in producing RS, and to estimate their roles and significance based on previously published experimental observations. Two concepts are introduced. The first establishes a hierarchy of different possible RS producing mechanisms from the micro (local) level of the tissue space, through the meso-level of the whole tissue, to the macro (organ) one. Whereas micro-level RS seem to be present in all soft tissues, the existence of macro- and meso-level mechanisms are tissue and organ specific. The second concept introduced highlights the significance of tissue swelling as an RS producing mechanism in the local micro-level. The implications of RS mechanism hierarchy are discussed regarding the interpretations of commonly used experimental methods aimed to study RS or to estimate its magnitude. Of the three categories of RS mechanisms, the local micro-RS is the least understood. It is analyzed here in terms of the tissue’s multiconstituent structure, in the framework of mixture theory. It is shown that the micro-RS can stem either from interactions between the solid tissue constituents or between its solids and its fluidlike matrix. The latter mode is associated with osmotic-driven tissue swelling. The feasibility of these two mechanisms is analyzed based on published observations and measured data. The analysis suggests that under conditions not too remote from the in vivo homeostatic one, osmotic-driven tissue swelling is a predominant RS producing mechanism. The analysis also suggests that a true stress-free configuration can be obtained only if all RS producing mechanisms are relieved, and outlines a manner by which this may be achieved.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference38 articles.

1. On Residual Stresses in Arteries;Chuong;ASME J. Biomech. Eng.

2. Strain Distribution in Small Blood Vessels With Zero-Stress State Taken Into Consideration;Fung;Am. J. Physiol.

3. Residual Strain in Rat Left Ventricle;Omens;Circ. Res.

4. Effect of Myocardial Swelling on Residual Strain in the Left Ventricle of the Rat;Lanir;Am. J. Physiol.

5. Residual Strains in Porcine and Canine Trachea;Han;J. Biomech.

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3