Study on Building Digital-Twin of Face-Milled Hypoid Gear From Measured Tooth Surface Topographical Data

Author:

Lee Yi-Hui1,Fong Zhang-Hua1

Affiliation:

1. Department of Mechanical Engineering, National Chung Cheng University, No. 168, Sec. 1, University Road, Minhsiung, Chiayi 62102, Taiwan, ROC

Abstract

AbstractA highly accurate digital-twin spiral bevel gear or hypoid gear is often required for dynamic analysis or stress analysis for gear transmission. However, a highly accurate digital-twin solid model is not always available because the final hypoid gear is completed by the gear manufacturer. This study constructs a digital-twin from a sample hypoid gear. The tooth surface of sample gear is digitized as topographical grids using a coordinate measuring machine (CMM) or a gear measurement center. The geometric parameters (the surface position vector, the normal vector, the principal curvatures, and the corresponding principal directions) for the measured tooth surface (MTS) are then extracted using numerical differential geometry (NDG). The machine settings and the cutter parameters for the sample hypoid gear are obtained by minimizing the topographical error between the replicated digital-twin and the sample gear using optimization software. The initial estimation for the machine settings and the cutter parameters is calculated using an explicit form of the modified-roll motion (MRM), which decreases numerical divergence and time that is required for calculation. The machine settings, the cutting tool parameters, and the auxiliary flank modification (AFM) motion are used as the design variables. A numerical example is presented to verify the proposed methodology. The numerical results show that the replicated digital-twin that is developed using the proposed method is sufficiently accurate for industrial applications.

Funder

Ministry of Science and Technology

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3