Lead-Free Alternatives for Interconnects in High-Temperature Electronics

Author:

Mallampati Sandeep1,Yin Liang2,Shaddock David2,Schoeller Harry3,Cho Junghyun1

Affiliation:

1. Department of Mechanical Engineering; Department of Materials Science and Engineering, Binghamton University (SUNY), Binghamton, NY 13902

2. GE Global Research, Niskayuna, NY 12309

3. Germanna Community College, Fredericksburg, VA 22408

Abstract

Predominant high melting point solders for high-temperature and harsh environment electronics (operating temperatures from 200 to 250 °C) are Pb-based systems, which are being subjected to RoHS regulations because of their toxic nature. In this study, high bismuth (Bi) alloy compositions with Bi-XSb-10Cu (X from 10 wt % to 20 wt %) were designed and developed to evaluate their potential as high-temperature, Pb-free replacements. Reflow processes were developed to make die-attach samples made from the cast Bi alloys. Die-attach joints made from Bi-15Sb-10Cu alloy exhibited an average shear strength of 24 MPa, which is comparable to that of commercially available high Pb solders. These alloy compositions also retained original shear strength even after thermal shock (TS) between −55 °C and +200 °C and high-temperature storage (HTS) at 200 °C. Brittle interfacial fracture sometimes occurred along the interfacial NiSb layer formed between Bi(Sb) matrix and Ni metallized surface. In addition, heat dissipation capabilities, using flash diffusivity, were measured on the die-attach assembly and were compared to the corresponding bulk alloys. The thermal conductivity of all the Bi–Sb alloys was higher than that of pure Bi. By creating high volume fraction of precipitates in a die-attach joint microstructure, it was feasible to further increase thermal conductivity of this joint to 24 W/m·K, which is three times higher than that of pure Bi (8 W/m·K). Bi–15Sb–10Cu alloy has so far shown the most promising performance as a die-attach material for high-temperature applications (operated over 200 °C). Hence, this alloy was further studied to evaluate its potential for plastic deformation. Bi–15Sb–10Cu alloy has shown limited plastic deformation in room temperature tensile testing in which premature fracture occurred via the cracks propagated on the (111) cleavage planes of rhombohedral crystal structure of the Bi(Sb) matrix. The same alloy has, however, shown up to 7% plastic strain under tension when tested at 175 °C. The cleavage planes, which became oriented at smaller angles to the tensile stress, contributed to improved plasticity in the high-temperature test.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3