Analysis and Efficiency Assessment of Direct Conversion of Wind Energy Into Heat Using Electromagnetic Induction and Thermal Energy Storage

Author:

Karasu Huseyin1,Dincer Ibrahim2

Affiliation:

1. Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1H 7K4, Canada e-mail:

2. Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1H 7K4, Canada e-mail:

Abstract

This study deals with thermodynamic analyses of an integrated wind thermal energy storage (WTES) system. The thermodynamic analyses of the proposed system are performed through energy and exergy approaches, and the energy and exergy efficiencies of the components in the system and overall system are determined and assessed. The magnitudes of irreversibilities are determined, and the impacts of different parameters on the performance of the system are identified. The overall energy and exergy efficiencies of the proposed system and its subsystems are computed as well. The energy and exergy efficiencies of the overall system are defined and obtained as 7.0% and 8.6%, respectively. WTES plants with combined molten salt energy storage application can run continuously, and can provide electrical power for both on-grid and off-grid systems. By converting the wind power into a permanent energy source, the WTES offers a practical solution that can meet the electrical demand of the regions where the climate conditions are feasible for consistent, environmentally benign and cost-effective electric power, and it can be considered as a potential energy solution.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3