Dynamic Analysis to Evaluate Viscoelastic Passive Damping Augmentation for the Space Shuttle Remote Manipulator System

Author:

Alberts Thomas E.1,Xia Houchun1,Chen Yung1

Affiliation:

1. Department of Mechanical Engineering and Mechanics, Old Dominion University, Norfolk, VA 23529-0247

Abstract

This paper presents a NASTRAN finite element analysis for evaluation of the effectiveness of viscoelastic damping treatments as passive controls for large flexible space manipulators. The passive damping could be used alone or as an augmentation to active control. Perhaps the best existing example of a practical flexible manipulator is the space shuttle Remote Manipulator System (RMS). The authors use the RMS as an example for this investigation, subjecting it to a detailed dynamic analysis which can be used to evaluate the critical modes for control and to distinguish the modes which are good candidates for active control from those which are well suited for passive control. Modal potential energy analysis (MPE) is used to examine the modal energy distribution in each structural member of the complex flexible chained system. The results indicate that the most dominant contributors to end-point oscillations fall into two categories. These include very low frequency modes due to joint flexibility and higher frequency modes due to bending in the booms. Significant end-point motions result from each category, but the most significant motions are associated with joint flexibility. Finally, a finite element analysis is performed to evaluate the effectiveness of constrained viscoelastic layer damping treatments for passive vibration control. Passive damping augmentation is introduced through the use of a constrained viscoelastic layer damping treatment applied to the surface of the manipulator’s flexible booms. It is shown that even the joint compliance dominated modes can be damped to some degree through appropriate design of the treatment.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trajectory Generation for Flexible-Joint Space Manipulators;Frontiers in Robotics and AI;2022-03-31

2. Introduction;Intelligent Systems, Control and Automation: Science and Engineering;2021-11-29

3. Forward and Inverse Kinematics Analysis of SMA Spring-Driven Flexible Manipulator;Lecture Notes in Electrical Engineering;2021-09-24

4. Assembly dynamics of a large space modular satellite antenna;Mechanism and Machine Theory;2019-12

5. Dynamic modeling of a two-link flexible manipulator using the Lagrangian finite elements method;Technology Drivers: Engine for Growth;2018-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3