Inverted Brayton Cycle With Exhaust Gas Condensation

Author:

Kennedy Ian1,Chen Zhihang1,Ceen Bob2,Jones Simon3,Copeland Colin D.1

Affiliation:

1. Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK e-mail:

2. Axes Design Ltd., Malvern WR14 4JU, UK e-mail:

3. HIETA Technologies Ltd., Bristol BS16 7FR, UK e-mail:

Abstract

Approximately 30% of the energy from an internal combustion engine is rejected as heat in the exhaust gases. An inverted Brayton cycle (IBC) is one potential means of recovering some of this energy. When a fuel is burnt, water and CO2 are produced and expelled as part of the exhaust gases. In an IBC, in order to reduce compression work, the exhaust gases are cooled before compression up to ambient pressure. If coolant with a low enough temperature is available, it is possible to condense some of the water out of the exhaust gases, further reducing compressor work. In this study, the condensation of exhaust gas water is studied. The results show that the IBC installed in series on a turbocharged engine can produce an improvement of approximately 5% in brake-specific fuel consumption at the baseline conditions chosen and for a compressor inlet temperature of 310 K. The main factors that influence the work output are heat exchanger pressure drop, turbine expansion ratio, coolant temperature, and turbine inlet temperature. For conditions when condensation is possible, the water content of the exhaust gas has a significant influence on work output. The hydrogen to carbon ratio of the fuel has the most potential to vary the water content and hence the work generated by the system. Finally, a number of uses for the water generated have been presented such as to reduce the additional heat rejection required by the cycle. It can also potentially be used for engine water injection to reduce emissions.

Funder

Innovate UK

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3