Affiliation:
1. Department of Civil Engineering, State University of New York at Buffalo, Amherst, New York 14260 USA
Abstract
Most recently, we have developed a novel multilevel boundary element method (MLBEM) for steady Stokes flows in irregular two-dimensional domains (Grigoriev, M.M., and Dargush, G.F., Comput. Methods. Appl. Mech. Eng., 2005). The multilevel algorithm permitted boundary element solutions with slightly over 16,000 degrees of freedom, for which approximately 40-fold speedups were demonstrated for the fast MLBEM algorithm compared to a conventional Gauss elimination approach. Meanwhile, the sevenfold memory savings were attained for the fast algorithm. This paper extends the MLBEM methodology to dramatically improve the performance of the original multilevel formulation for the steady Stokes flows. For a model problem in an irregular pentagon, we demonstrate that the new MLBEM formulation reduces the CPU times by a factor of nearly 700,000. Meanwhile, the memory requirements are reduced more than 16,000 times. These superior run-time and memory reductions compared to regular boundary element methods are achieved while preserving the accuracy of the boundary element solution.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献