Modeling of Liquid Entrainment in Gas in Horizontal Pipes

Author:

Mantilla I.1,Gomez L.2,Mohan R.2,Shoham O.2,Kouba G.1,Roberts R.1

Affiliation:

1. Chevron, Houston, TX

2. The University of Tulsa, Tulsa, OK

Abstract

The purpose of the present study is to improve the current prediction capabilities of the entrainment fraction in horizontal gas-liquid flow. Since it is recognized that waves at the gas-liquid interface are the main source of entrainment, an experimental and theoretical work has been carried out to characterize the waves at the gas-liquid interface and to develop a model for entrainment calculations based on such characteristics. The model consists of three sub-models, namely, onset of entrainment, maximum entrainment and entrainment values in between. The onset of entrainment model determines the conditions at which the gas starts shearing the wave crests through a force balance between drag and surface tension forces. The maximum entrainment model provides the maximum fraction of liquid that can be entrained at high gas velocities by integration of the turbulent velocity profile to a determined dimensionless film thickness within the buffer sub layer. The entrainment fraction in between onset and maximum boundaries is calculated from an equilibrium between atomization and deposition rates. The atomization rate is calculated by first determining the wave mass flux in the liquid film and second by calculating the fraction of a single wave that is sheared by the gas through a force balance. The deposition rate is calculated as a linear function of the droplet concentration in the gas. Closure relationships have been developed from data for wave celerity, frequency, amplitude and width which are used in the entrainment model. A review of the most used correlations for calculating the entrainment fraction is presented and their performance evaluated. The present model shows better prediction than available models when compared to the acquired experimental data and the available experimental data in the literature.

Publisher

ASMEDC

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3