Flow Simulation Around a Rotating Circular Cylinder With Surface Roughness by the Vortex Method

Author:

Tsukiji Tetsuhiro1,Matsubara Yuko1

Affiliation:

1. Sophia University, Tokyo, Japan

Abstract

The two-dimensional flow around a rotating circular cylinder with surface roughness in a steady uniform flow is investigated using a vortex method. The Reynolds number is 9500, while the rotating speed ratios of the peripheral velocity to the uniform velocity is 0–1.0. The surface roughness is distributed around the circular cylinder and its strength is 0.5% of the diameter. The viscous diffusion effects and the no-slip condition are considered. Before the calculation for a rotating circular cylinder with the surface roughness, the flow simulation for a circular cylinder in the steady uniform flow was conducted to confirm the present method. The development of the twin vortices and the velocity profiles behind the circular cylinder at the beginning of the calculation are compared with the previous experimental results. It is found that the calculated results are in good agreement with the experiments. The development of the vortices, the drag and the lift coefficients are computed by changing the rotating speed ratio for the circular cylinder both with the surface roughness and without it. The influence of the surface roughness and the rotating speed ratio on the vortex development, the drag and the lift coefficients are examined.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on Jet Flow from an Orifice of a Valve Plate with a Groove in an Axial Piston Pump;TRANSACTIONS OF THE JAPAN FLUID POWER SYSTEM SOCIETY;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3