Bubble Breakup Phenomena in a Venturi Tube

Author:

Fujiwara A.1,Okamoto K.2,Hashiguchi K.2,Peixinho J.2,Takagi S.2,Matsumoto Y.2

Affiliation:

1. University of Tsukuba, Tsukuba, Ibaraki, Japan

2. University of Tokyo, Tokyo, Japan

Abstract

Microbubble generation techniques have been proposed in former investigations. Here, we study an effective technique using air bubbly flow into a convergent-divergent nozzle (venturi tube). Pressure change in the diverging section induces bubble breakup. The purpose of this study is to clarify the effect of flow velocity at the throat with respect to the bubble breakup process and the bubble behavior in a venturi tube. Relations between generated bubble diameter and bubble breakup process are also described. Using high speed camera for detailed observation of bubble behavior, the following features were obtained. The velocity at the throat is expected to be of the order of the magnitude of the speed of sound of bubbly flow and a drastic bubble expansion and a shrink is induced. Besides, a liquid column appeared after the bubble flowing into the throat, and it grew up to stick to the bubble like in the form of a jet. This jet induced both unstable surface waves and the breakup of a single large bubble into several pieces.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3