Experimental Investigation of Flow Instabilities and Rotating Stall in a High-Energy Centrifugal Pump Stage

Author:

Berten Stefan1,Dupont Philippe2,Fabre Laurent1,Kayal Maher1,Avellan Francois1,Farhat Mohamed1

Affiliation:

1. Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

2. Sulzer Pumps Ltd., Winterthur, Switzerland

Abstract

In centrifugal pumps, the interaction between the rotating impeller and the stationary diffuser generates specific pressure fluctuation patterns. When the pump is operated at off design conditions, these pressure fluctuations increase. The resulting rise of mechanical vibration levels may negatively affect the operational performance and the life span of mechanical components. This paper presents detailed pressure fluctuation measurements performed in a high speed centrifugal pump stage at full scale at various operating conditions. The impeller and stationary part (diffuser, exit chamber) of the pump stage have been equipped with piezoresistive miniature pressure sensors. The measured data in the impeller have been acquired using a newly developed onboard data acquisition system, designed for rotational speeds up to 6000 rpm. The measurements have been performed synchronously in the rotating and stationary domains. The analysis of pressure fluctuations at the impeller blade trailing edge, which had significantly larger amplitudes as the pressure fluctuations in the stationary domain, allowed the detection and exploration of stalled channels in the vaned diffuser. This stall may be stationary or rotating with different rotational speeds and number of stalled channels, depending on the relative flow rate and the rotational speed of the pump. The stall yields pressure fluctuations at frequencies which are multiples of the rotational speed of the impeller and generates additional sources of mechanical excitation.

Publisher

ASMEDC

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3