Visualization and Measurements of Microdroplet Impact Dynamics on a Curved Substrate

Author:

Chow Chu Kei1,Attinger Daniel1

Affiliation:

1. State University of New York at Stony Brook, Stony Brook, NY

Abstract

The basic problem of the impact of a microdroplet on a curved substrate is of central importance to micromanufacturing and targeted spray cooling of microdevices. The transient fluid dynamics involved in the droplet spreading and eventual splashing drastically influence the heat transfer involved in these processes. Although the fluid dynamics and heat transfer related to microdroplet impact on flat substrates is well documented, there is a lack of systematic study concerning microdroplet impact on a substrate of comparable curvature. Such a study is reported in this paper. Droplets of typical diameter and velocity of respectively 80 micrometer and 9 m/s were produced with a piezoelectrically-driven generator. The fluids used were filtered water and isopropanol. The size, velocity and temperature of the droplets were maintained constant. The primary variable is the substrate curvature, which was varied using a collection of spheres with diameters ranging from 60 micrometer to 10 millimeter. The dynamic behavior of the microdroplet during impact is visualized and quantified in this paper. Based on the experimental results, an existing analytical correlation that predicts the spreading temporal evolution is extended to account for substrate curvature.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3