Effects of Long and Short Relaxation Times of Particle Interactions in Dense and Slow Granular Flows

Author:

Zhang Duan Z.1,Rauenzahn Rick M.1

Affiliation:

1. Los Alamos National Laboratory, Los Alamos, NM

Abstract

The rheological properties and the duration of particle interactions in a dense granular media are closely related to the formation of particle interaction networks. The behavior of particle interaction networks depends not only on the particle volume fractions but also on friction between particles. For examples, for frictionless particles, a particle interaction network may not form at particle volume fraction greater than 0.62, the random dense packing volume fraction for monodisperse spheres. Without network formation, particle interactions are short in time and mostly binary. Under this condition, the granular medium can be modeled as a viscous fluid with variable viscosity as in kinetic theory. Formation of particle interaction networks dramatically increases particle interaction time and results in a phase transition in the constitutive relations of the granular medium. Then, the stress relaxation time is inversely proportional to the macroscopic shear rate in simple shear flows, and the granular medium can be modeled as a viscoelastic material with a stress relaxation time depending on the macroscopic shear rate. For small shear rates, the stresses in the granular medium are independent of macroscopic shear rates in simple shear flows. Thus, as the shear rate approaches zero, the relaxation time approaches infinity, and the shear stress approaches a finite value, the yield stress, instead of zero. We also studied the relaxation behavior of the stress tensor under time-dependent shear rates. The dynamics of the particle interaction network leads to a nonlinear behavior of stress relaxation not exhibited by ordinary viscoelastic materials, such as polymeric fluids.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3