Affiliation:
1. Old Dominion University, Norfolk, VA
2. Istanbul Technical University, Istanbul, Turkey
Abstract
Fluid flows in micro devices span the entire Knudsen (Kn) number regime. Depending on the Kn range, a full continuum or a full free-molecular analysis may be applicable. In the present study, flows in the Kn range of 10−3 to 10−1 are considered and they are modeled using a conventional Navier-Stokes solver. Its boundary conditions, however, have been modified to account for the slip velocity and the temperature jump conditions encountered in these micro-sized geometries. The computations have been performed for straight micro channels, a micro backward facing step, and a micro filter. The present results are then compared with analytical formulae and other computations available in the literature. The results indicate that the rarefaction and compressibility effects present in these micro devices have been accurately predicted. In the case of slip flow, the separation is found to occur at a higher Reynolds number compared to the corresponding no-slip flow case. As the next step of the study, micro synthetic jets will be computed and the optimal cavity actuator geometries will be sought for desired flow deflections.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献