Effects of Dimple Size and Depth on Golf Ball Aerodynamic Performance

Author:

Ting L. L.1

Affiliation:

1. LLT & Associate, Ann Arbor, MI

Abstract

Based on the three-dimensional CFD modeling method reported previously, systematic computational sensitivity studies of how the changes of dimple size, depth, number, coverage area, and distribution pattern will affect the golf ball aerodynamic performance have been made by considering those variables individually and then collectively. By using a new golf ball surface design with 344 identical single-sized circular dimples, but keeping the dimple distribution pattern and the dimple diameter unchanged, the dimple depth effect was first investigated by varying the dimple depressions from shallow to deep, and an optimum value corresponding to minimum drag loss has been found. Using the balls with same optimum dimple depth, drag results show the tendency of decreasing as the dimple diameter increases from small to large until a limit is reached. Beyond this limit, drag coefficient will remain to be a constant even with the further increases of the dimple diameter. Ball drag and lift results obtained and presented are not only for the whole ball, but also separately for the dimple occupied area and the dimple-free cage area. Influence of ball backspin motion to the magnitude of the dimple’s optimum depth value was found to be insignificant. Flow field solutions of velocity vectors, trace lines, pressure, and turbulence intensity have also been obtained, and some are used to show how the changes of dimple depth, dimple diameter, as well as the ball backspin motion, will affect the wake formation behind the ball both in size and shape.

Publisher

ASMEDC

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3