Modeling and Analysis of a Pressure Compensated Flow Control Valve

Author:

Cheng Minter1

Affiliation:

1. Feng Chia University, Taichung, Taiwan, Republic of China

Abstract

In hydraulic systems, flow control valve is used to regulate the flow of fluid to actuators by adjusting the valve opening. However, the inlet and the outlet pressures of the valve are not always remaining constant. Any change in pressure will alter the flow rate through the valve and alter the actuator speed consequently. Pressure compensated flow control valves are often used in hydraulic systems when accurate speed control is required under varying supply or load pressures. The basic structure of the pressure compensated flow control valve is by incorporating a compensating spool to maintain a constant pressure drop across the metering orifice. Under ideal circumstance, the actuator speed can be constant and controllable, regardless of load or system pressure changes. However, in practical applications, any system or load pressures variations will cause force unbalance on valve compensating spool and affect the control accuracy. The steady and dynamic response of the flow control valve plays an important role on hydraulic system behavior. Therefore, analyzing and understanding of the valve steady and dynamic behaviors is very important. In this study, the steady and dynamic performance of a pressure compensated flow valve is simulated numerically by solving the characteristic equations. The parameters studied in this research are biased spring constant, pre-compressed spring length, spool mass, and the damping orifice characteristics. The simulation results show that the flow force is identified as the key factor to affect the control accuracy. Increasing the spring constant as well as the pre-compressed spring length will increase the steady flow rate and reduce the transient response time. Decreasing the damping orifice opening or the discharge coefficient will increase the transient response time. The spool mass has practically no effect on the flow rate.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3