Experimental and Theoretical Study on Mechanical Properties of Porous PDMS

Author:

Huang Chen1,Bian Zuguang2,Fang Chengfeng1,Zhou Xiaoliang3,Song Jizhou4

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

2. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China e-mail:

3. Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China

4. Soft Matter Research Center, State Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China

Abstract

Polydimethylsiloxane (PDMS) is extensively used in clinical flexible electronics, due to its biocompatibility and stability. When it is employed in a stretchable epidermal sensor for long-term monitoring, PDMS must have open pores within it to assure the sweat penetration. In the present paper, we focus on the mechanical properties of porous PDMS with different volume porosities at different temperatures. The emulsion polymerization technique is applied to fabricate porous PDMS. By controlling the ratio of water to PDMS prepolymer, different porosities of PDMS were obtained, and elastic moduli of such porous PDMS were measured in experiment. Results indicate that the elastic modulus increases nonlinearly as its temperature rises from 0 °C to 40 °C (a temperature range frequently encountered in clinical applications). Meanwhile, an asymptotic homogenization method (AHM) is employed to theoretically predict the elastic modulus and Poisson's ratio of porous PDMS, whose reliability is testified by comparing the results with experimentally measured data. Further theoretical discussions on mechanical properties are carried out, and results show that the pore size of porous PDMS has almost no effect on the elastic modulus and Poisson's ratio for certain porosities. Porosity of porous PDMS, however, has significant effect on both of these two mechanical parameters. Two fitted nonlinear formulas are then proposed to estimate the elastic modulus and Poisson's ratio of porous PDMS for any volume porosity less than 50%. All the results in the present paper are essential for mechanical design and optimization of clinical flexible electronics based on porous PDMS.

Funder

National Natural Science Foundation of China

Ministry of Education of the People's Republic of China

Ministry of Science and Technology of the People's Republic of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3