Effect of Attic Ventilation on the Performance of Radiant Barriers

Author:

Medina Mario A.1,O’Neal Dennis L.1,Turner W. Dan2

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

2. College of Engineering, Texas A&M University, College Station, TX 77843

Abstract

The objective of the experiments was to quantify how attic ventilation would affect the performance of a radiant barrier. Ceiling heat flux and space cooling load were both measured. Results of side-by-side radiant barrier experiments using two identical 13.38 m2 (nominal) test houses are presented. The test houses responded similarly to weather variations. Indoor temperatures of the test houses were controlled to within 0.2°C. Ceiling heat fluxes and space cooling load were within a 2.5 percent difference between both test houses. The results showed that a critical attic ventilation flow rate of 1.3 (l/sec)/m2 of the attic floor existed after which the percentage reduction in ceiling heat fluxes produced by the radiant barriers did not change with increasing attic airflow rates. The ceiling heat flux reductions produced by the radiant barriers were between 25 and 35 percent, with 28 percent being the percent reduction observed most often in the presence of attic ventilation. The space-cooling load reductions observed were between two to four percent. All results compiled in this paper were for attics with unfaced fiberglass insulation with a resistance level of 3.35 m2 K/W (nominal) and for a perforated radiant barrier with low emissivities (less than 0.05) on both sides.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3