Dynamic Left Atrioventricular Phantom Test Bed Emulating Mitral Valve Motion

Author:

Azar Toufic1,McLennan Stewart1,Walsh Michael2,Angeles Jorge1,Kövecses Jozsef1,Jaramillo Tabitha1,Mongrain Rosaire1,Cecere Renzo3

Affiliation:

1. Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada

2. Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick V94T9PX, Ireland

3. McGill University Health Centre, McGill University, Royal Victoria Hospital, Montreal, QC H3A 2A7, Canada

Abstract

Abstract Novel catheter-based medical procedures targeting heart valve structures are currently under development. These techniques entail installing a prosthetic implant on valves inside a beating heart. The development of these approaches requires a simple and effective validation test bed. Current early process testing methods rely on both static and dynamically pressurized excised porcine hearts. The variability between excised-tissue mechanical properties poses problems of reproducibility. In addition, these test beds do not emulate annulus motion, which affects the implant installation. A reproducible phantom of the left atrioventricular chambers was developed. The system consists of a hydraulic constant flow arrangement and a polyvinyl alcohol phantom heart with material properties that mimic passive myocardium mechanical properties and annulus motion. The system was then used to emulate blood flow through an actual heart. The building process starts by obtaining an accurate computer-aided design (CAD) model of a human heart, from which, a mold is produced using a novel rapid-freezing prototyping method and computer numerical control machining. The phantom is then cast-out of polyvinyl alcohol (PVA), a hydrogel, whose mechanical properties are set by subjecting the phantom to freeze and thaw cycles. Subsequently, blood flow is emulated at a constant volumetric rate at the atrial pressure observed in a healthy adult human heart at rest. The annulus motion is implemented by suturing the outside of the phantom to a one-degree-of-freedom cam-follower mechanism reproducing valve motion. Such test beds could play a significant role in future development of medical devices.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3