Analytical and Numerical Validation of a Moving Modes Method for Traveling Interaction on Long Structures

Author:

Recuero Antonio M.1,Escalona José L.2

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL 60607 e-mail:

2. Department of Mechanical and Materials Engineering, University of Seville, Camino de los descubrimientos s/n, Seville 41092, Spain e-mail:

Abstract

This work is devoted to the validation of a computational dynamics approach previously developed by the authors for the simulation of moving loads interacting with flexible bodies through arbitrary contact modeling. The method has been applied to the modeling and simulation of the coupled dynamics of railroad vehicles moving on deformable tracks with arbitrary undeformed geometry. The procedure presented makes use of a fully arbitrary Lagrangian–Eulerian (ALE) description of the long flexible solid (track) whose mechanical properties may be captured using a dynamics-preserving selection of modes, e.g., via a Padé approximation of a transfer function. The modes accompany the contact interaction rather than being referred to a fixed frame, as it occurs in the finite-element floating frame of reference formulation. In the method discussed in this paper, the mesh, which moves through the long flexible solid, is defined in the trajectory coordinate system (TCS) used to describe the dynamics of the set of bodies (vehicle) that interact with the long flexible structure. For this reason, the selection of modes can be focused on the preservation of the dynamics of the structure instead of having to ensure the structure's static displacement convergence due to the motion of the load. In this paper, the validation of the so-called trajectory coordinate system/moving modes (TCS/MM) method is performed in four different aspects: (a) the analytical mechanics approach is used to obtain the equations of motion in a nonmaterial volume, (b) the resulting equations of motion are compared to the classical discretization procedures of partial differential equations (PDE), (c) the suitability of the moving modes (MM) to describe deformation due to variable-velocity moving loads, and (d) the capability of the finite nonmaterial volume to describe the dynamics of an infinitely long flexible body. Validation (a) is completely general. However, the particular example of a moving load applied to a straight beam resting on a Winkler foundation, with known semi-analytical solution, is used to perform validations (b), (c), and (d).

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3