Affiliation:
1. Hanford Engineering Development Laboratory, Richland, Wash. 99352
Abstract
Large changes in strength and ductility of metals after irradiation are known to occur. The fracture toughness of irradiated metals, which is related to the combined strength and ductility of a material, may be significantly reduced and the potential for unstable crack extension increased. For relatively thin materials which retain substantial ductility, even after irradiation, the fracture behavior cannot be analyzed by linear elastic fracture mechanics techniques. Instead, the multispecimen R-curve method and J-integral analysis were used to develop an experimental approach to evaluate the fracture toughness of thin breeder reactor materials irradiated at elevated temperatures. Alloy A-286 was chosen for this work because the alloy exhibits elastic/plastic behavior and the fracture toughness data of thicker (12 mm) specimens were available for comparison. Technical problems associated with specimen buckling and remote handling were treated in this work. The results are discussed in terms of thickness criterion for plane strain.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献