Investigation of the Capacity Factor of Weather-Routed Energy Ships Deployed in the Near-Shore

Author:

Abd Jamil Roshamida1,Gilloteaux Jean-Christophe1,Lelong Philippe2,Babarit Aurélien1

Affiliation:

1. Ecole Centrale de Nantes, Nantes, France

2. MELTEMUS, La Chapelle sur Erdre, France

Abstract

Abstract The energy ship concept has been proposed as an alternative wind power conversion system to harvest offshore wind energy. Energy ships are ships propelled by the wind and which generate electricity by means of water turbines attached underneath their hull, The generated electricity is stored on-board (batteries, hydrogen, etc.) It has been shown that energy ships deployed far-offshore in the North Atlantic Ocean may achieve capacity factors over 80% using weather-routing. The present paper complements this research by investigating the capacity factors of energy ships harvesting wind power in the near-shore. Two case studies are considered: the French islands of Saint-Pierre et-Miquelon, near Canada, and Ile de Sein, near metropolitan France. The methodology is as follows. First, the design of the energy ship considered in this study is presented. It was developed using an in-house Velocity, and Power Performance Program (VPPP) developed at LHEEA. The velocity and power production polar plots of the ship were used as input to a modified version of the weather-routing software QtVlm. This software was then used for capacity factor optimization using 10m altitude wind data analysis which was extracted from the ERA-Interim dataset provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Three years (2015, 2016, and 2017) data are considered. The results show that average capacity factors of approximately 40% and 40% can be achieved at Ile de Sein and Saint-Pierre-et-Miquelon with considered energy ship design.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3