Mechatronic Design and Active Disturbance Rejection Control of a Bag Valve-Based Mechanical Ventilator

Author:

Arcos-Legarda Jaime1,Tovar Andres2

Affiliation:

1. Department of Mechatronics Engineering, Universidad de San Buenaventura, Cr. 8h 172-20, Bogotá 111156, Colombia

2. Department of Mechanical and Energy Engineering, Indiana University–Purdue University Indianapolis, 723 West Michigan Street, SL 260N Indianapolis, IN 46202-5132

Abstract

Abstract This paper presents the mechatronic (mechanical and control system) design of a functional prototype of a portable mechanical ventilator to treat patients with a compromised respiratory function. The portable ventilator ensures adequate oxygenation and carbon dioxide clearance while avoiding ventilator-induced lung injury (VILI). Oxygen is delivered through the compression of a bag valve (Ambu bag) using a moving strap. Carbon dioxide is cleared through the control of a pinch valve actuated by a low-torque servomotor. The positive end-expiratory pressure (PEEP) is controlled by an adjustable mechanical valve of the system. An Arduino Mega microcontroller board is used in this prototype to control the respiratory variables. All mechanical components as well as sensors, actuators, and control hardware are of common use in robotics and are very inexpensive. The total cost of the prototype built in this work is about $425 U.S. dollars. The design is meant to be replicated and utilized in emergency conditions that involve an overwhelming number of cases, such as COVID-19 treatment, in places with no access to commercial mechanical ventilation (MV) technologies. In order to account for variations in the prototype as built, the software developed for this portable MV applies an active disturbance rejection control (ADRC) strategy. This control strategy is presented as a universal control structure for any mechanical ventilator able to supply air flow with controlled pressure and volume.

Funder

National Science Foundation

Universidad de San Buenaventura

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3