Optimal Torque Distribution for the Stability Improvement of a Four-Wheel Distributed-Driven Electric Vehicle Using Coordinated Control

Author:

Zhang Xizheng1,Wei Kexiang2,Yuan Xiaofang3,Tang Yongqi2

Affiliation:

1. Hunan Institute of Engineering, Fuxing Road, No. 88, Xiangtan City, Hunan Province 411104, China e-mails: ;

2. Hunan Institute of Engineering, Fuxing Road, No. 88, Xiangtan City, Hunan Province 411104, China e-mail:

3. School of Electrical and Information Engineering, Hunan University, Lushan South Road, Changsha City, Hunan Province 410082, China e-mail:

Abstract

This paper presented an optimal torque distribution scheme for the stability improvement of a distributed-driven electric vehicle (DEV). The nonlinear dynamics and tire model of the DEV are constructed. Moreover, the single-point preview optimal curvature model with the proportional-integral-derivative (PID) process is developed to simulate the driver's behavior. By using coordinated control and sliding mode control, a three-layer hierarchical control system was developed. In the upper level, the integral two degree-of-freedom (DOF) linear model is used to compute the equivalent yaw moment for vehicle stability. With the actuators' restrictions, the middle level solved the linear quadratic regulator (LQR) problem via a weighted least square (WLS) method to optimally distribute the wheel torque. In the lower level, a slip rate controller (SRC) was presented to reallocate the actual torques based on the sliding mode method. The simulation results show that the proposed scheme has high path-tracking accuracy and that vehicle stability under limited conditions is improved efficiently. Moreover, the safety under actuator failure is enhanced.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3