On the Dynamic Collapse of Cylindrical Shells Under Impulsive Pressure Loadings

Author:

da Silva Monteiro Luciana Loureiro1,Netto Theodoro Antoun2,da Camara Monteiro Paulo Cesar3

Affiliation:

1. Department of Mechanical Engineering, CEFET/RJ, Rio de Janeiro 20271.110, Brazil

2. Federal University of Rio de Janeiro, COPPE—Ocean Engineering Program, P.O. Box 68.508, Rio de Janeiro, 21.945.970, Brazil

3. Federal University of Rio de Janeiro, COPPE—Ocean Engineering Program, P.O. Box 68.508, Rio de Janeiro 21.945.970, Brazil

Abstract

The dynamic collapse of submerged cylindrical shells subjected to lateral impulsive pressure loads caused by underwater explosions is studied via coupled experimental and numerical work. Two sets of experiments were performed. Initially, 50.8 mm outside diameter aluminum tubes with diameter-to-thickness ratio of 32.3 were tested inside a pressure vessel. Hydrostatic pressure was applied quasi-statically up to the onset of collapse in order to obtain the collapse pressure of the tubes tested. Subsequently, similar tubes were tested in a 5 m × 5 m × 1.6 m deep water tank under various explosive charges placed at different distances. Explosive charges and standoff distances were combined so as to eventually cause collapse of the specimens. Dynamic pressures were recorded using a fit-for-purpose data acquisition system with sampling rates of up to 1 mega samples/s/channel. In parallel, finite element models were developed using commercially available software to simulate underwater explosion, pressure wave propagation, its interaction with a cylindrical shell, and the subsequent onset of dynamic collapse. The surrounding fluid was modeled as an acoustic medium, the shells as J2 flow theory based materials with isotropic hardening, and proper fluid–structure interaction elements accounting for relatively small displacements of the boundary between fluid and structure were used. Subsequently, the physical explosion experiments were numerically reproduced with good correlation between results. Finally, a parametric study was carried out to examine the effect on the pipe under different impulsive pressure loads.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference17 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3