Development of an Open-Source Autonomous Computational Fluid Dynamics Meta-Modeling Environment for Small-Scale Combustor Optimization

Author:

Briones Alejandro M.1,Rankin Brent A.2

Affiliation:

1. Fuels & Combustion Division, University of Dayton Research Institute, Dayton, OH 45469

2. Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433

Abstract

Abstract This work presents an open-source autonomous computational fluid dynamics (CFD) metamodeling environment (OpenACME) for small-scale combustor design optimization in a deterministic and continuous design space. OpenACME couples several object-oriented programing open-source codes for conjugate-heat transfer, steady-state, multiphase incompressible Reynolds averaged Navier-Stokes CFD-assisted engineering design metamodeling. There are fifteen design variables. Nonparametric rank regression (NPRR), global sensitivity analyses (GSA), and single-objective (SOO) optimization strategies are evaluated. The Euclidean distance (single-objective criterion) between a design point and the utopic point is based on the multi-objective criteria: combustion efficiency (η) maximization and pattern factor (PF), critical liner area factor (Acritical ), and total pressure loss (TPL) minimization. The SOO approach conducts Latin hypercube sampling (LHS) for reacting flow CFD for subsequent local constraint optimization by linear interpolation. The local optimization successfully improves the initial design condition. The SOO approach is useful for guiding the design and development of future gas turbine combustors. NPRR and GSA indicate that there are no leading-order design variables controlling η, pattern factor (PF), Acritical , and TPL. Therefore, interactions between design variables control these output metrics because the output design space is inherently nonsmooth and nonlinear. In summary, OpenACME is developed and demonstrated to be a viable tool for combustor design metamodeling and optimization studies.

Funder

Air Force Research Laboratory

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference35 articles.

1. Automated Design Optimization of a Small-Scale High-Swirl Cavity-Stabilized Combustor

2. Automated Design Optimization of a Small-Scale High-Swirl Cavity-Stabilized Combustor;ASME J. Eng. Gas Turbines Power,2018

3. Multiple-Objective Optimization of a Small-Scale Cavity-Stabilized Combustor,2019

4. Effect of Deterministic and Continuous Design Space Resolution on Multiple-Objective Combustor Optimization

5. LES-Verified RANS-Based Deterministic and Continuous Multiple-Objective Combustor Design Optimization

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3