Analytical Modeling and Experimental Verification of the Vibrations of the Zigzag Microstructure for Energy Harvesting

Author:

Karami M. Amin1,Inman Daniel J.1

Affiliation:

1. Center for Intelligent Materials Systems and Structures, Virginia Tech, 310 Durham Hall, Blacksburg, VA 24061

Abstract

This paper addresses an issue in energy harvesting that has plagued the potential use of harvesting through the piezoelectric effect at the micro-electro-mechanical systems (MEMS) scale. Effective energy harvesting devices typically consist of a cantilever beam substrate coated with a thin layer of piezoceramic material and fixed with a tip mass tuned to resonant at the dominant frequency of the ambient vibration. The fundamental natural frequency of a beam increases as its length decreases, so that at the MEMS scale the resonance condition occurs orders of magnitude higher than ambient vibration frequencies, rendering the harvester ineffective. Here, we propose a new geometry for MEMS scale cantilever harvesters with low fundamental frequencies. A “zigzag” geometry is proposed, modeled, and solved to show that such a structure would be able to vibrate near resonance at the MEMS scale. An analytical solution is presented and verified against Rayleigh’s method and is validated against a macroscale experiment. The analysis is used to provide design guidelines and parametric studies for constructing an effective MEMS scale energy harvesting device in the frequency range common to low frequency ambient vibrations, removing a current barrier.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3