Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading-Edge Wall

Author:

Taslim M. E.1,Bakhtari K.1,Liu H.1

Affiliation:

1. Mechanical, Industrial, and Manufacturing Engineering Department, Northeastern University, Boston, MA 02115

Abstract

Effective cooling of the airfoil leading edge is imperative in gas turbine designs. Among several methods of cooling the leading edge, impingement cooling has been utilized in many modern designs. In this method, the cooling air enters the leading edge cavity from the adjacent cavity through a series of crossover holes on the partition wall between the two cavities. The crossover jets impinge on a smooth leading-edge wall and exit through the film holes, and, in some cases, form a cross flow in the leading-edge cavity and move toward the end of the cavity. It was the main objective of this investigation to measure the heat transfer coefficient on a smooth as well as rib-roughened leading-edge wall. Experimental data for impingement on a leading-edge surface roughened with different conical bumps and radial ribs have been reported by the same authors previously. This investigation, however, deals with impingement on different horseshoe ribs and makes a comparison between the experimental and numerical results. Three geometries representing the leading-edge cooling cavity of a modern gas turbine airfoil with crossover jets impinging on (1) a smooth wall, (2) a wall roughened with horseshoe ribs, and (3) a wall roughened with notched-horseshoe ribs were investigated. The tests were run for a range of flow arrangements and jet Reynolds numbers. The major conclusions of this study were: (a) Impingement on the smooth target surface produced the highest overall heat transfer coefficients followed by the notched-horseshoe and horseshoe geometries. (b) There is, however, a heat transfer enhancement benefit in roughening the target surface. Among the three target surface geometries, the notched-horseshoe ribs produced the highest heat removal from the target surface, which was attributed entirely to the area increase of the target surface. (c) CFD could be considered as a viable tool for the prediction of impingement heat transfer coefficients on an airfoil leading-edge wall.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3