Polycrystal Simulations Investigating the Effect of Additional Slip System Availability in a 6063 Aluminum Alloy at Elevated Temperature

Author:

Maniatty Antoinette M.1,Littlewood David J.1,Lu Jing1

Affiliation:

1. Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180

Abstract

In order to better understand and predict the intragrain heterogeneous deformation in a 6063 aluminum alloy deformed at an elevated temperature, when additional slip systems beyond the usual octahedral slip systems are active, a modeling framework for analyzing representative polycrystals under these conditions is presented. A model polycrystal that has a similar microstructure to that observed in the material under consideration is modeled with a finite element analysis. A large number of elements per grain (more than 1000) are used to capture well the intragranular heterogeneous response. The polycrystal model is analyzed with three different sets of initial orientations. A compression test is used to calibrate the material model, and a macroscale simulation of the compression test is used to define the deformation history applied to the model polycrystal. In order to reduce boundary condition effects, periodic boundary conditions are applied to the model polycrystal. To investigate the effect of additional slip systems expected to be active at elevated temperatures, the results considering only the 12 {111}⟨110⟩ slip systems are compared to the results with the additional 12 {110}⟨110⟩ and {001}⟨110⟩ slip systems available (i.e., 24 available slip systems). The resulting predicted grain structure and texture are compared to the experimentally observed grain structure and texture in the 6063 aluminum alloy compression sample as well as to the available data in the literature, and the intragranular misorientations are studied.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3