Numerical Analysis of Magnetic Field and Heat Transfer of a Reciprocating Magnetocaloric Regenerator Using a Halbach Magnet Array

Author:

Akış Tunahan1,Hamad Abdullatif2,Ezan Mehmet Akif3,Yanık Erim4,Yılancı Ahmet1,Çelik Serdar5,Ekren Orhan1

Affiliation:

1. Solar Energy Institute, Ege University, Bornova, Izmir 35100, Turkey

2. Department of Physics, Southern Illinois University, Edwardsville, IL 62026

3. Department of Mechanical Engineering, Dokuz Eylul University, Izmir 35400, Turkey

4. Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180

5. Department of Mechanical Engineering, Southern Illinois University, Edwardsville, IL 62026

Abstract

Abstract In this study, a numerical model of a reciprocating magnetocaloric regenerator using a Halbach magnet array is developed in ansys-fluent software. The model consists of three components, namely, (i) the Halbach magnet array, (ii) the magnetocaloric material (MCM), and (iii) the heat transfer fluid. A two-dimensional (2D) domain is studied due to the axisymmetric geometry of the physical model. A pressure difference is defined between the inlet and outlet sections of the fluid domain to maintain a reciprocating fluid flow. In the proposed computational scheme, a segregated approach is followed to consider the spatial distribution of the magnetic field in the thermal analyses. Therefore, a 2D magnetic field within the MCM is computed using an analytical approach at first, and its results are integrated into ansys-fluent with a user-defined function (UDF). Hydrodynamic and heat transfer characteristics of the proposed regenerator model are evaluated under various Reynolds numbers and cycle durations. Moreover, the temperature drop at the cold side of the regenerator is represented in terms of the pressure difference, flow duration, and the diameter of Gadolinium (Gd) as the MCM. For the current geometrical configurations, it is observed that the magnetic field varies from 0.4 T to 1 T within Gd. The highest temperature spans are measured as 8.4 K, 7.5 K, and 7.2 K numerically for the cycle durations of 1.2 s, 2.2 s, and 4.2 s, respectively.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3