Analysis of Leaf Seal Leakage Performance Under the Influence of Manufacturing Variations Using Experiment and Computational Fluid Dynamics

Author:

Griebel Clemens1

Affiliation:

1. Institute for Energy Systems, Technical University of Munich, Garching 85748, Germany

Abstract

Abstract In this paper, test data are combined with results from two different computational fluid dynamics (CFD) models to investigate the leakage performance of leaf seals. Experimental data are gathered for centric rotor position using a rotating test rig at various rotational speeds, inlet pressures, and preswirl velocities. The test results are compared to brush and labyrinth seal leakage data from previous studies and reveal elevated leakage rates of the leaf seal. As the tested leaf seals are subject to thermal leaf deformation from welding during the manufacturing process, the influence of geometry variations within the leaf pack on leakage performance is investigated with the help of numerical simulations. Both a fully resolved leaf model and a modeling approach based on porous media are used. The CFD models are validated based on pressure measurements within the up- and downstream coverplate gaps at three different radii. Both CFD models show good agreement with test data for different inlet parameters. A variation of cold clearance shows moderate influence on leakage and small clearances can be brought into context with hydrodynamic lift-up indicated by experimental leakage data. Much higher sensitivity on leakage mass flow is predicted for variations in leaf spacing at the leaf root and leaf tip. The latter is discussed as an explanation for the measured leakage of the test seal with its manufacturing variations, while the first quantitatively shows optimization potential at the design stage of leaf seals.

Funder

GE Power

German Federal Ministry for Economic Affairs and Energy

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference24 articles.

1. Shaft seal and Turbine Using the Same,2002

2. Development of New High Efficiency Steam Turbine: Technical Review;Technical Review,2003

3. The Development of High-Performance Leaf Seals;ASME J. Eng. Gas Turbines Power,2004

4. Upgraded M501G Operating Experience,2005

5. Compliant Turbomachine Sealing,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3