A Product Feature Evolution Validation Model for Engineering Change Management

Author:

Bouikni Nadjib1,Desrochers Alain1,Rivest Louis2

Affiliation:

1. Department of Mechanical Engineering, University of Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Quebec, J1H 2R1, Canada

2. Department of Automated Production Engineering, Ecole de technologie superieure, 1100 Notre-Dame West, Montreal, H3C1K3, Canada

Abstract

Product design integrates several disciplines in a concurrent engineering (CE) environment. Each one of these disciplines has a specific point of view on the product being developed. While each discipline exerts its own expertise and methods on the definition of the product and its related processes, information must remain consistent for all disciplines and through the evolution of the product definition. This paper proposes a product feature evolution validation (PFEV) model that aims at controlling the information flow needed to support a product definition evolution (PDE) while insuring its validation by all disciplines involved. The model applies both to the product design and modification phases, i.e., before and after releasing its definition. The PFEV model thus supports CE and enables managing the product feature evolution throughout the product life cycle. The PFEV model defines an exchange protocol between the disciplines in order to preserve the consistency of the numerical model, which includes the complete numerical information characterizing the product. The model addresses two qualities of an information system: dispatching relevant PDE information to appropriate disciplines and providing this information according to specific views. This is achieved by centralizing the product numerical model and by exploiting the product’s features rather than managing product model as black boxes. Links between features are formalized in a shared product features table that is used to dynamically identify all disciplines impacted by a product feature evolution (PFE). A PFE is also characterized by its potential impact, detrimental or beneficial, on every discipline previously identified as impacted. In the case of a detrimental impact, the discipline is asked to validate the evolution. If the impact is beneficial, the discipline is simply notified about the evolution. Specific views are generated for the impacted disciplines based on feature filtering and adaptation mechanisms.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Part Change Management: A Case Study on Automotive Engineering and Production; Domestic and International Perspectives;ASME Open Journal of Engineering;2023-01-01

2. Knowledge Modelling for an Electrical PLM System in Aeronautics;Product Lifecycle Management and the Industry of the Future;2017

3. Well-controlled engineering change propagation via a dynamic inter-feature association map;Research in Engineering Design;2016-03-09

4. Quantification of cost and risk during product development;Computers & Industrial Engineering;2014-10

5. Analysis of new product development research: 1998-2009;Benchmarking: An International Journal;2014-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3