Simulation and Experimental Validation of Alternate Pathways of Impulse Noise Conduction Into the Inner Ear

Author:

Tan X. Gary1,Chen YungChia1,O'Shaughnessy Thomas J.1

Affiliation:

1. U.S. Naval Research Laboratory , Washington, DC 20375

Abstract

Abstract Recent data from heavy weapons training and breaching exercise environments suggest that protection of the ear canal alone may not be sufficient to prevent detrimental effects of blast-induced impulse noise on the Warfighter. This work is to elucidate alternate pathways of impulse noise penetration into the inner ear, including through the soft tissues of the head and bone conduction, gain insight into the fundamental mechanism(s) of blast induced hearing loss and validate the computational model with experiment. We have exposed the instrumented head model to impulse noise events generated via a shock tube (sound pressure level > 140 dB) to identify the role of bone conduction in pressure build up in the inner ear. Concurrently, we have developed a finite element (FE) model of the head to simulate the biomechanical response of the ear to impulse noise. The loading condition applied to the model to characterize the biomechanical effects in the ear is derived from notional weapons firing incidents. We have also developed an inner ear model to analyze the dynamic behavior of the basilar membrane when subjected to skull vibration stimulated by an impulse noise event. Using the simulated motion of the basilar membrane, we attempted to establish the relationship between the impulse noise and possible auditory disruption outcomes to the inner ear.

Publisher

ASME International

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3