Rate-Limited and Energy-Efficient Feedforward Control for Multi-Fuel Unmanned Aircraft Systems Engine

Author:

Govind Raju Sathya Aswath1,Cornelius Andrew1,Sun Zongxuan1,Kim Kenneth2,Kweon Chol-Bum Mike2

Affiliation:

1. University of Minnesota Twin Cities Department of Mechanical Engineering, , Minneapolis, MN 55455

2. DEVCOM Army Research Laboratory , Aberdeen Proving Ground, MD 21005

Abstract

Abstract Surrogate-model or data-driven model-based control frameworks are becoming increasingly popular in recent years due to their ease of model development and enhanced computational power, making them suitable for real-time use. However, when it comes to modeling aspects related to time, difficulties arise as many of the models deal with quasi-static systems. In this paper, we propose a method to model time-dependent actuator constraints in a surrogate-model-based control framework for controlling the combustion phasing in a multi-fuel UAS engine. Along with this, a conducive method for designing an energy-efficient ignition assistant control is discussed. The developed methods are then tested on a diesel engine, and the results show a more robust and energy-efficient combustion phasing control as the fuel property varies in real-time.

Funder

U.S. Army Research Laboratory

Publisher

ASME International

Subject

General Medicine,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3