Numerical Investigations of Turbulent Flow Through a 90-Degree Pipe Bend and Honeycomb Straightener

Author:

Jurga Agata Patrycja1,Janocha Marek Jan1,Ong Muk Chen1,Yin Guang1

Affiliation:

1. Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger , Stavanger 4036, Norway

Abstract

Abstract Pipe bends are commonly used in piping systems in offshore and subsea installations. The present study explores the design considerations for the honeycomb straightener inserted downstream of a 90-degree pipe bend. The objective of the study is to evaluate the effectiveness of the honeycomb in suppressing the flow swirling for different distances from the bend outlet (Lb) and different values of the honeycomb thickness (t). The turbulent flow through the 90-degree circular pipe bend with the honeycomb straightener is investigated by carrying out numerical simulations using the Reynolds-averaged Navier–Stokes (RANS) turbulence modeling approach. The explicit Algebraic Reynolds Stress Model (EARSM) is adopted to resolve the Reynolds stresses. The honeycomb thickness to pipe diameter ratio (t/D) is varied between 0.1 and 1. The normalized distance from the bend outlet to the honeycomb straightener (Lb/D) is varied between 1 and 5. The disturbance in the velocity field is generated by the pipe bend with the curvature radius to pipe diameter ratio (Rc/D) of 2 and Reynolds number (Re) of 2 × 105. It is found that both the increase in Lb/D and t/D improve the performance of the device in removing the swirl behind the bend outlet. The best performance is observed for the honeycomb straightener with the distance Lb/D=5 and thickness t/D=0.5.

Publisher

ASME International

Subject

Mechanical Engineering

Reference36 articles.

1. Measurement of fluid flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full—Part 1: General Principle and Requirements, Annex C;ISO 5167-1,2003

2. Velocity and Static-Pressure Distributions in Swirling Air Jets Issuing From Annular and Divergent Nozzles;ASME J. Basic Eng.,1964

3. Flow Conditioning–A New Development;Flow Meas. Instrum.,1990

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3