Thermophoresis—Enhanced Deposition Rates in Combustion Turbine Blade Passages

Author:

Vermes G.1

Affiliation:

1. Combustion Turbine Systems Division, Westinghouse Electric Corporation, Eddystone, PA. 19013

Abstract

Analysis of the deposition rate in cooled and uncooled turbine cascades indicates that the temperature difference between the cooled wall and the hot working gas significantly increases the deposited fraction of the solid material, i.e., the “catch efficiency.” Data from residual oil-burning turbines show that a 300°C (572°F) temperature difference between gas and wall can cause a fifteenfold increase in deposition rate as compared with the case of the adiabatic cascade. It is proposed that the increase is due to the phenomenon called thermophoresis: Small particles moving toward colder regions under the influence of a thermal gradient in the continuum surrounding them. An approximate method of calculation is presented which is based on the Einstein/Epstein formula for thermophoresis and simplified cascade considerations; results are compared with laboratory and field data.

Publisher

ASME International

Subject

General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3