Predicting the Optical Performance of the Space Interferometry Mission Using a Modeling, Testing, and Validation Methodology

Author:

Basdogan Ipek1,Elias Laila Mireille2,Dekens Frank3,Sievers Lisa3

Affiliation:

1. Department of Mechanical Engineering, Koc University, Sariyer, Istanbul, 80910

2. Space Systems Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139

3. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

Abstract

This paper presents the modeling, testing, and validation methodologies developed to predict the optical performance of the Space Interferometry Mission (SIM) at the Jet Propulsion Laboratory (JPL). The modeling methodology combines structural, optical, and control system design within a common state space framework and incorporates reaction wheel assembly (RWA) disturbances to evaluate the end-to-end performance of the system requirements. The validation methodology uses the Micro-Precision Interferometer (MPI) testbed, which is a ground-based, representative hardware model of SIM. In this study, the integrated model of the MPI testbed was used to calculate the transfer functions from RWA input to optical performance output. The model-predicted transfer functions were compared with the MPI testbed measurements, and the accuracy of the integrated model was quantified using a metric that was based on output power of the transfer functions. The RWA disturbances were then propagated through the modeled and measured transfer functions to predict the optical performance of the MPI testbed. This method is called the “decoupled disturbance analysis” and relies on the “blocked” RWA disturbances, measured with the RWA hardmounted to a rigid surface. These predictions were compared with the actual (measured) optical performance of MPI, measured with the RWA mounted to MPI, to evaluate the accuracy of the decoupled disturbance analysis method. The results show that this method is not an accurate representation of the coupled boundary conditions that occurs when the RWA is mounted to the flexible MPI structure. In order to correct for the blocked RWA disturbance boundary conditions, the “coupled disturbance analysis” method was developed. This method uses “force filters” that depend on estimates of the interface accelerances of the RWA and the MPI structure to effectively transform the blocked RWA disturbance measurements into their corresponding “coupled” disturbances (the disturbances that would occur at the coupled RWA-MPI interface). Compared to the decoupled method, the coupled method more accurately predicts the system’s performance. Additionally, the RWA cross-spectral density terms were found to be influential in matching the performance predictions to the measured optical performance of MPI.

Publisher

ASME International

Subject

General Engineering

Reference18 articles.

1. Orbiting Stellar Interferometer;Shao

2. Control Technology Readiness for Spaceborne Optical Interferometer Missions;Neat

3. A Model Validation Study of the Wave Front Tip/Tilt System Using the Micro-Precision Interferometer;Basdogan

4. Hasha, M. D. , 1986, “Reaction Wheel Mechanical Noise Variations,” Space Telescope Program Engineering Memo SSS 218, June.

5. Discrete Frequency and Broadband Reaction Wheel Disturbance Models;Melody

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3