Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues

Author:

Sun Wei1,Sacks Michael S.21,Scott Michael J.3

Affiliation:

1. Engineered Tissue Mechanics Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA

2. 412-235-5146; 412-235-5160

3. Edwards Lifesciences, Irvine, CA

Abstract

Evaluation and simulation of the multiaxial mechanical behavior of native and engineered soft tissues is becoming more prevalent. In spite of this growing use, testing methods have not been standardized and methodologies vary widely. The strong influence of boundary conditions were recently underscored by Waldman et al. [2002, J. Materials Science: Materials in Medicine 13, pp. 933–938] wherein substantially different experimental results were obtained using different sample gripping methods on the same specimens. As it is not possible to experimentally evaluate the effects of different biaxial test boundary conditions on specimen internal stress distributions, we conducted numerical simulations to explore these effects. A nonlinear Fung-elastic constitutive model (Sun et al., 2003, JBME 125, pp. 372–380, which fully incorporated the effects of in-plane shear, was used to simulate soft tissue mechanical behavior. Effects of boundary conditions, including varying the number of suture attachments, different gripping methods, specimen shapes, and material axes orientations were examined. Results demonstrated strong boundary effects with the clamped methods, while suture attachment methods demonstrated minimal boundary effects. Suture-based methods appeared to be best suited for biaxial mechanical tests of biological materials. Moreover, the simulations demonstrated that Saint-Venant’s effects depended significantly on the material axes orientation. While not exhaustive, these comprehensive simulations provide experimentalists with additional insight into the stress–strain fields associated with different biaxial testing boundary conditions, and may be used as a rational basis for the design of biaxial testing experiments.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3