Localized Structures in Vertically Vibrated Granular Materials

Author:

Zamankhan Piroz1,Huang Jun2

Affiliation:

1. Laboratory of Computational Fluid and BioFluid Dynamics, Lappeenranta University of Technology, Lappeenranta, Finland and Department of Mechanical Engineering, Shahrekord University, P.O. Box 115, Shahrekord, Iran

2. Laboratory of Computational Fluid and BioFluid Dynamics, Lappeenranta University of Technology, Lappeenranta, Finland

Abstract

Granular materials exhibit unusual kinds of behavior, including pattern formations during the shaking of the granular materials; the characteristics of these various patterns are not well understood. Vertically shaken granular materials undergo a transition to convective motion that can result in the formation of bubbles. A detailed overview is presented of collective processes in gas-particle flows that are useful for developing a simplified model for molecular dynamic type simulations of dense gas-particle flows. The governing equations of the gas phase are solved using large eddy simulation technique. The particle motion is predicted by a Lagrangian method. Particles are assumed to behave as viscoelastic solids during interactions with their neighboring particles. Interparticle normal and tangential contact forces are calculated using a generalized Hertzian model. The other forces that are taken into account are gravitational and drag force resulting from velocity difference with the surrounding gas. A simulation of gas-particle flow is performed for predicting the flow dynamics of dense mixtures of gas and particles in a vertical, pentagonal, prism shaped, cylindrical container. The base wall of the container is subjected to sinusoidal oscillation in the vertical direction that spans to the bottom of the container. The model predicts the formation of oscillon type structures on the free surface. In addition, the incomplete structures are observed. Interpretations are proposed for the formation of the structures, which highlights the role played by the surrounding gas in dynamics of the shaken particles.

Publisher

ASME International

Subject

Mechanical Engineering

Reference30 articles.

1. Localized Excitations in Vertically Vibrated Granular Layer;Umbanhowar;Nature (London)

2. Physics in a Jumping Sandbox;Fineberg;Nature (London)

3. Spontaneous Wave Pattern Formation in Vibrated Granular Materials;Aoki;Phys. Rev. Lett.

4. Competition Between Randomizing Impact and Inelastic Collision in Granular Pattern Formation;Shinbrot;Nature (London)

5. Model for Subharmonic Waves in Granular Materials;Cerda;Phys. Rev. Lett.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3