The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems

Author:

Khan Waseem A.1,Angeles Jorge1

Affiliation:

1. Department of Mechanical Engineering & Centre for Intelligent Machines, McGill University, Montreal, QC H3A 2A7, Canada

Abstract

The design of a robotic manipulator begins with the dimensioning of its various links to meet performance specifications. However, a methodology for the determination of the manipulator architecture, i.e., the fundamental geometry of the links, regardless of their shapes, is still lacking. Attempts have been made to apply the classical paradigms of linkage synthesis for motion generation, as in the Burmester Theory. The problem with this approach is that it relies on a specific task, described in the form of a discrete set of end-effector poses, which kills the very purpose of using robots, namely, their adaptability to a family of tasks. Another approach relies on the minimization of a condition number of the Jacobian matrix over the architectural parameters and the posture variables of the manipulator. This approach is not trouble-free either, for the matrices involved can have entries that bear different units, the matrix singular values thus being of disparate dimensions, which prevents the evaluation of any version of the condition number. As a means to cope with dimensional inhomogeneity, the concept of characteristic length was put forth. However, this concept has been slow in finding acceptance within the robotics community, probably because it lacks a direct geometric interpretation. In this paper the concept is revisited and put forward from a different point of view. In this vein, the concept of homogeneous space is introduced in order to relieve the designer from the concept of characteristic length. Within this space the link lengths are obtained as ratios, their optimum values as well as those of all angles involved being obtained by minimizing a condition number of the dimensionally homogeneous Jacobian. Further, a comparison between the condition number based on the two-norm and that based on the Frobenius norm is provided, where it is shown that the use of the Frobenius norm is more suitable for design purposes. Formulation of the inverse problem—obtaining link lengths—and the direct problem—obtaining the characteristic length of a given manipulator—are described. Finally a geometric interpretation of the characteristic length is provided. The application of the concept to the design and kinetostatic performance evaluation of serial robots is illustrated with examples.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference29 articles.

1. Vinogradov, I. B., Kobrinski, A. E., Stepanenko, Y. E., and Tives, L. T., 1971, “Details of Kinematics of Manipulators With the Method of Volumes” (in Russian), Mekhanika Mashin (27–28), pp. 5–16.

2. On the Conditioning of Robotic Manipulators—Service Angle;Yang;ASME J. Mech., Transm., Autom. Des.

3. Manipulability of Robotic Mechanisms;Yoshikawa;Int. J. Robot. Res.

4. Geometric Optimization of Serial Chain Manipulator Structures for Working Volume and Dexterity;Vijaykumar;Int. J. Robot. Res.

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3